Transferrin: a potential source of iron for oxygen free radical-mediated endothelial cell injury.
نویسندگان
چکیده
The ability of transferrin to potentiate oxygen free radical-mediated endothelial cell injury was assessed. 51Cr-labeled endothelial cells derived from rat pulmonary arteries (RPAECs) were incubated with hydrogen peroxide (H2O2) in the presence and absence of holosaturated human transferrin, and the effect of transferrin on H2O2-mediated endothelial cell toxicity was determined. Addition of holosaturated transferrin potentiated H2O2-mediated RPAEC cytotoxicity at concentrations of H2O2 greater than 10 microM, suggesting that transferrin may provide a source of iron for free radical-mediated endothelial cell injury. Free radical-mediated injury is dependent on non-protein-bound iron. The ability of RPAECs to facilitate the release of iron from transferrin was assessed. We determined that RPAECs facilitate the release of transferrin-derived iron by reduction of transferrin-bound ferric iron (Fe3+) to ferrous iron (Fe2+). The reduction and release of transferrin-derived Fe2+ were inhibited by apotransferrin and chloroquine, indicating a dependence on receptor-specific binding of transferrin to the RPAEC cell surface, with subsequent endocytosis, acidification, and reduction of transferrin-bound Fe3+ to Fe2+. The release of transferrin-derived Fe2+ was potentiated by diethyldithiocarbamate, an inhibitor of intracellular superoxide dismutase (SOD). In contrast, exogenous SOD did not alter iron release, suggesting that intracellular superoxide anion (O2-) may play an important role in mediating the reduction and release of transferrin-derived iron. Results of this study suggest that transferrin may provide a source of iron for oxygen free radical-mediated endothelial cell injury and identify a novel mechanism by which endothelial cells may mediate the reduction and release of transferrin-derived iron.
منابع مشابه
Protease-cleaved iron-transferrin augments oxidant-mediated endothelial cell injury via hydroxyl radical formation.
Previous work has shown that the Pseudomonas-derived protease, pseudomonas elastase (PAE), can modify transferrin to form iron complexes capable of catalyzing the formation of hydroxyl radical (.OH) from neutrophil (PMN)-derived superoxide (.O2-) and hydrogen peroxide (H2O2). As the lung is a major site of Pseudomonas infection, the ability of these iron chelates to augment oxidant-mediated pul...
متن کاملOxygen radicals, inflammation, and tissue injury.
Inflammatory reactions often result in the activation and recruitment of phagocytic cells (e.g., neutrophils and/or tissue macrophages) whose products result in injury to the tissue. In killing of endothelial cells by activated neutrophils as well as in lung injury produced by either activated neutrophils or activated macrophages there is evidence that H2O2 and iron play a role. HO. may be a ke...
متن کاملTumor necrosis factor-alpha-induced iron sequestration and oxidative stress in human endothelial cells.
OBJECTIVE Tumor necrosis factor (TNF)-alpha-induced endothelial injury, which is associated with atherosclerosis, is mediated by intracellular reactive oxygen species. Iron is essential for the amplification of oxidative stress. We tested whether TNF-alpha accelerated iron accumulation in vascular endothelium, favoring synthesis of hydroxyl radical. METHODS AND RESULTS Diverse iron transporte...
متن کاملTumor Necrosis Factor- –Induced Iron Sequestration and Oxidative Stress in Human Endothelial Cells
Objective—Tumor necrosis factor (TNF)–induced endothelial injury, which is associated with atherosclerosis, is mediated by intracellular reactive oxygen species. Iron is essential for the amplification of oxidative stress. We tested whether TNFaccelerated iron accumulation in vascular endothelium, favoring synthesis of hydroxyl radical. Methods and Results—Diverse iron transporters, including i...
متن کاملNitric oxide induces hypoxia ischemic injury in the neonatal brain via the disruption of neuronal iron metabolism
We have recently shown that increased hydrogen peroxide (H2O2) generation is involved in hypoxia-ischemia (HI)-mediated neonatal brain injury. H2O2 can react with free iron to form the hydroxyl radical, through Fenton Chemistry. Thus, the objective of this study was to determine if there was a role for the hydroxyl radical in neonatal HI brain injury and to elucidate the underlying mechanisms. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Archives of biochemistry and biophysics
دوره 294 1 شماره
صفحات -
تاریخ انتشار 1992